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Abstract
Berth allocation is one of the most important optimization problems in container terminals at ports worldwide. From both the 
port operator’s and the shipping lines’ point of view, minimizing the time a vessel spends at berth and minimizing the total 
cost of berth operations are considered fundamental objectives with respect to terminal operations. In this study, we focus on 
the berth allocation problem (BAP), where berth positions are assigned to arriving ships with the objective of reducing the 
total service cost, which includes waiting cost, handling cost, and several penalties, such as a penalty for late departure and a 
penalty for non-optimal berth allocation. First, the BAP is formulated as a mixed-integer linear programming (MILP) model. 
Since BAP is an NP-hard problem and cannot be solved by mathematical approaches in a reasonable time, a metaheuristic 
approach, namely, a cuckoo search algorithm (CSA), is proposed in this study to solve the BAP. To validate the performance 
of the proposed CSA-based method, we use two benchmark approaches, namely, the genetic algorithm (GA) and the optimal 
MILP solution. Next, we conduct several experiments using a benchmark data set as well as a randomly-generated larger data 
set. Simulation results show that the proposed CSA algorithm has higher efficiency in allocating berths within a reasonable 
computation time than its counterparts.

Keywords Berth allocation problem · Intelligent sea transportation · Cuckoo search algorithm · Metaheuristic 
optimization · Maritime container terminal

Introduction

Background and Motivations

The shipping industry covers 90% of the world seaborne 
trade movements and 74% of the total goods that are 
imported or exported in Europe travel with ships [1]. 
According to Hsu et al. [2], 60% of the total sea transport 
is based on containers, which is also growing every year by 

6.4%. Hence, the maritime container terminal (MCT) serves 
as an important node in the shipping industry to deal with 
increasing sea trade. Another recent report [3] stated that 
worldwide ports have handled almost 701 million twenty-
foot equivalent units (TEUs) of containers in 2016. At the 
same time, the throughput of container ports is also continu-
ously increasing, and the management of MCTs’ operations 
is becoming a challenging task. As a critical and integral 
part of the global transportation network, the MCTs serve 
the cost-efficient delivery of various products in different 
markets. Linear shipping companies use mega-ships in order 
to carry large containers up to 20,000 TEUs [4]. Since the 
MCTs are of such high value in the maritime industry, there 
is an exigent need to enhance the operational efficiency of 
MCTs by minimizing the total turnaround service times of 
vessels and achieving competitive strategy along with cus-
tomer satisfaction. Moreover, port authorities always try to 
optimize MCT operations by employing various strategies 
for the efficient utilization of all the port resources.

MCT operations can be categorized into three major oper-
ational areas, namely, seaside, land-side, and yard-side oper-
ations, as presented in Fig. 1. Among all MCT operations, 
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the seaside operations are the most important as they affect 
the overall performance of MCTs. Inefficient planning and 
improper utilization of port resources may create several 
issues, including congestion, long waiting times, and late 
departures. For instance, 13,647 vessels arrived from Jan 
to Sep 2019 at Port of Shanghai, China, from which almost 
57% of vessels arrived late (more than 12 h) [5]. According 
to another recent report presented in [6], the average wait-
ing times for vessels from port-to-berth are 2.2, 2.4, and 2.7 
h in Malaysia, Dubai, and China, respectively. Michaelides 
et al. [7] investigate the factors influencing the various 
waiting times at the Port of Limassol, Cyprus, both from 
a quantitative and a qualitative perspective. For shipping, 
and particularly for short sea shipping, there are obvious 
and immediate benefits from improving efficiency by sup-
porting all actors involved in the port call process to engage 
more easily, to give shipping companies, port service provid-
ers, and ship agents better information and decision support 
systems to boost their efficiency and that of their port [8]. 
Hence, MCTs’ operators need to employ suitable strategies 
and approaches for proper utilization of the port resources 
and to avoid the aforementioned issues.

These challenges have motivated us to focus on enhancing 
seaside operations, and more specifically, the berth alloca-
tion problem (BAP). The BAP is a well-known problem that 
aims to assigning berthing positions to arriving vessels at 
the port in order to minimize or maximize a given objec-
tive function (e.g., minimize total waiting time, reduce late 
departures, or maximize terminal performance). Before deal-
ing with the BAP, it is necessary to understand the prob-
lem environment. Based on the current literature, there are 

two major factors affecting the BAP, i.e., the configuration 
of quay/wharf and the arrival time of ships. Quays can be 
configured in three different ways: (1) continuous berthing 
layout, where arriving vessels can be moored at any loca-
tion along the wharf; (2) discrete berthing layout, where 
the wharf is divided into a fixed number of berths; and (3) 
hybrid berthing layout, where a mix of continuous and dis-
crete berthing layouts is encountered [9]. In terms of ves-
sel arrivals, there are two main types: (1) static arrivals, 
where all the vessels are assumed to be at the MCT before 
berth planning and (2) dynamic arrivals meaning that ves-
sels are not at the MCT before berth planning but instead 
the expected time of arrival (ETA) is known for each vessel. 
Static arrivals are a simple special case of dynamic arrivals 
(where all ships are expected to arrive at the same time), 
while the discrete berthing layout is a basic variation of the 
more-complex continuous layout scenario. Thus, this study 
focuses primarily on the continuous berthing layout together 
with dynamic vessel arrivals (i.e., DC-BAP).

Contributions

The present study is an extended version of [10] and solves 
the BAP with the aim of reducing the total service cost of 
arriving ships, which includes waiting costs, handling costs, 
as well as penalties for late departures. We first formulate 
BAP as a mixed-integer linear programming (MILP) prob-
lem and solve it using the cuckoo search algorithm (CSA), 
a metaheuristic computational intelligence approach that we 
applied to BAP for the first time in [10]. Furthermore, we 
enhance the BAP mathematical formulation with some new 

Fig. 1  Illustration of MCT with 
multiple berthing positions 
assuming discrete and continu-
ous berthing layout
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practical constraints and features compared to the current 
literature and our previous study [10], which include: (1) a 
penalty for non-optimal berthing positions that is propor-
tional to the distance from the preferred berthing position, 
(2) a safety time interval between consecutive berth arrivals 
due to practical constraints present at the port entrance, and 
(3) account for smaller time intervals, which offer better, 
more fine-grained berth allocation decisions. We also imple-
ment two benchmark algorithms to verify the effectiveness 
of our proposed algorithm, namely, genetic algorithm (GA) 
and an exact approach (MILP). Extensive simulations were 
performed on two types of data instances; the first one was 
obtained from the existing literature (benchmark data) and 
the second data set (it includes up to 100 arriving ships) was 
generated based on real-world data (by uniform distribu-
tion). The simulation results show that the proposed CSA 
method outperforms its counterparts in terms of reducing 
service cost within a reasonable computation time.

Organization

The remainder of the paper is organized as follows. Litera-
ture review is presented in Section “Literature Review”. 
Section “Problem Description” explains the investigated 
problem and provides its mathematical formulation. Our 
proposed CSA method along with the compared approach 
is described in detail in Section “Proposed and Benchmark 
Approaches” and simulation settings along with results are 
presented in Section “Experimental Results”. Finally, Sec-
tion “Conclusions” concludes the paper.

Literature Review

Several approaches are reported in the literature that deal 
with the BAP [11, 12]. These approaches may provide 
exact solutions [13] or approximate (based on heuristic or 
metaheuristic) solutions [14, 15]. However, approximate 
approaches are more popular over exact methods due to 
their efficiency in terms of computational complexity. The 
authors of [14] present a solution of the BAP by employing 
evolutionary algorithms (EAs), particle swarm optimiza-
tion (PSO), and differential evolution (DE). An EA-based 
solution is developed in [15] to deal with BAP, while the 
study presented in [16] proposed a simulated annealing (SA) 
algorithm for the same problem. [13] developed a mixed-
integer linear programming (MILP) model to deal with the 
BAP and a genetic algorithm (GA) is developed in [17] to 
solve the BAP.

For the dynamic and continuous BAP (DC-BAP), there 
have been significant efforts in the recent literature to solve 
the problem using mainly metaheuristic and evolutionary 
approaches. A GA-based approach is developed in [18] to 

deal with the DC-BAP to minimize penalty costs for late 
departures. In [19], the objectives of this study are to mini-
mize the total service cost and the total ship stay time at the 
port. To solve the DC-BAP, a variant of the neighborhood 
search method called adaptive large neighborhood search 
(ALNS) algorithm is developed. The algorithm works based 
on the principle of destroy and recreate, where at each itera-
tion some solutions are destroyed and new ones are gener-
ated in different ways to find the best solution according to 
fitness criteria. The authors of [20] discuss DC-BAP with 
the aim of minimizing total delays in departures. A GA-
based hybrid algorithm is developed by including some fea-
tures of the branch & bound (B&B) method. For compari-
son purposes, the hybrid method along with counterparts 
(i.e., standard GA and CPLEX) are implemented on differ-
ent data sets, which include small and large data instances. 
The results from experiments show the effectiveness of the 
hybrid method. Another DC-BAP study is carried out in [21] 
with the primary objective of reducing delays in departures. 
This study considers some new tidal constraints to make 
the problem more realistic. The DC-BAP is formulated in 
three different ways, i.e., standard MILP, time-indexed vari-
ables-based MILP (TI-MILP), and MILP based on sequence 
variables (S-MILP). Furthermore, the authors develop some 
data sets based on real-time data, which can be utilized in 
the future as benchmark data sets. Subsequently, these three 
models are solved on a CPLEX solver and simulation results 
demonstrate that the time-indexed-based MILP achieves 
higher efficiency with lower computation time. The DC-
BAP is investigated in another study [22], where the major 
aim of the study is to perform a robust berth allocation and 
to achieve minimum turnaround-time. A recently developed 
metaheuristic, namely, grey wolf optimization (GWO) is 
adopted to handle DC-BAP. Moreover, several uncertainties 
are also taken into account to make the problem more practi-
cal, i.e., uncertainty in arrival times and operational times of 
vessels. The results from experiments confirm the efficiency 
of GWO in solving the BAP with uncertainties over state-
of-the-art methods, such as GA and CPLEX. Another study 
[23] solves a new version of BAP, where multiple quays 
instead of a single quay and continuous berthing layouts are 
assumed. They formulate this problem as an integer linear 
model and then solve it using GA. To confirm the effective-
ness of the proposed method, several simulations are per-
formed with different sized data sets and the results show the 
effectiveness against the compared approaches.

For the discrete and dynamic BAP (DD-BAP), there have 
also been significant efforts in the recent literature to solve 
the problem using mainly metaheuristic and evolutionary 
approaches. A genetic algorithm (GA) is adopted to solve 
the DD-BAP in [24], where the fundamental motive is to 
minimize service time of arriving ships that includes wait-
ing time and handling time. Furthermore, unlike existing 



 SN Computer Science           (2022) 3:325   325  Page 4 of 15

SN Computer Science

studies, the authors of this work modeled BAP such that each 
berth has different handling productivity. The results from 
simulations show that their proposed GA-based approach 
can solve larger instances as compared to a CPLEX solver. 
Another study presented in [25] also develops a heuristic-
based GA to solve the same problem, i.e., DD-BAP. The 
authors construct a mixed-integer programming (MIP) 
model that considers a discrete berthing layout along with 
dynamic vessel arrivals with the aim of reducing delays in 
departures as well as shifting workload in night-times. Sev-
eral experiments were also conducted to affirm the perfor-
mance of the proposed GA method and results show the 
efficacy of the newly developed algorithm over counterparts. 
The authors of [26] proposed an evolutionary-based method, 
i.e., an enhanced differential evolution (EDE) algorithm, to 
deal with DD-BAP. This study has two primary objectives: 
(i) reducing delays in ships’ departure times and (ii) total 
handling time minimization. Furthermore, to check the pro-
ductivity of the proposed EDE method, several benchmark 
approaches are also implemented, i.e., GSSP, tabu search, 
and particle swarm optimization (PSO). Results are provided 
demonstrating the superiority of the proposed method over 
counterparts in terms of the aforementioned objectives.

In this paper, we propose using a cuckoo search algo-
rithm (CSA) to solve the berth allocation problem. The CSA 
was first introduced in our previous work [10] for solving 
the dynamic and continuous berth allocation problem (DC-
BAP). In this study, we extend the BAP mathematical for-
mulation by considering penalty for non-optimal berth posi-
tion, safety time interval between consecutive berth arrivals, 
and account for smaller time intervals (30-min time inter-
val), which offer better, more fine-grained berth allocation 
decisions.

Problem Description

This section first describes in detail the BAP considered 
in this work, followed by a mathematical formulation as a 
mixed-integer linear programming problem. Table 1 lists all 
abbreviations and notations used in this section and through-
out the paper.

In the dynamic and continuous berth allocation problem, 
the MCT has one or more continuous berthing layouts of 
known lengths that serve vessels arriving at different points 
in time (i.e., in a dynamic fashion). Let B = {1, 2,… ,M} 
denote the set of all possible berthing positions on the wharf 
of the port. Typically, the BAP considers a particular time 
period of vessel arrivals, such as the next 48 h. Hence, time 
is modeled as a set of time intervals T = {1, 2,… ,K} that 
can represent some time duration of interest (e.g., an hour 
or a 30-min interval). Finally, let S = {1, 2,… ,N} denote 
the set of ships arriving at the terminal. For each ship, 

the estimated time of arrival (ETA), the preferred berth-
ing position (PBP), the ship’s length, and the estimated (or 
requested) time of departure (ETD) are known in advance.

In the ideal scenario, as soon as a vessel arrives at the 
MCT, it should be moored at its preferred berthing position. 
If the MCT cannot serve the vessel at the time of arrival, 
the vessel must be towed to the waiting area of the terminal, 
as shown in Fig. 1, and/or berth at a non-optimal berthing 
position. In the first scenario, the number of ships in the 
waiting area increases, causing congestion and navigational 
challenges to arise at the seaside of the terminal. In this 

Table 1  Nomenclature

Name Explanation

Acronyms
 BAP Berth allocation problem
 BP Berthing position
 CSA Cuckoo search algorithm
 DC-BAP Dynamic and continuous BAP
 ETA Estimated time of arrival
 ETD Estimated time of departure
 GA Genetic algorithm
 HT Handling time
 LoS Length of ship
 MCT Maritime container terminal
 PBP Preferred berthing position
 QCs Quay cranes
 WC Waiting cost
 WT Waiting time

Indices
 b ∈ B = {1, 2,… ,M} Berthing position
 s ∈ S = {1, 2,… ,N} Individual ship
 t ∈ T = {1, 2,… ,K} Single time period

Notations
 BP

s
Berthing position of ship s

 BT
s

Berthing time of s
 ETA

s
Estimated time of arrival of s

 ETD
s

Estimated time of departure of s
 HC

s
Handling cost of s per time period

 HT
s

Handling time of s
 L

b
Length of berth b (only for discrete 

berthing layout)
 L

s
Length of ship s

 LDC
s

Late departure cost of s per time period
 LDT

s
Late departure time of s

 NBC
s

Non-optimal berthing cost of s
 PBP

s
Preferred berthing position of s

 SET Safety entrance time
 W Length of wharf
 WC

s
Waiting cost of s per time period

 WT
s

Waiting time of s
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case, the MCT incurs an extra waiting cost WCs against the 
ship s for the duration of s’ waiting time (e.g., calculated in 
EURO/hour).

Once the ships are moored at their assigned berthing 
position, the quay cranes (QCs) start working in order to 
load/unload containers. Container handling resources (e.g., 
number of QCs, gantry cranes) are allocated to ships based 
on the handling rate that is negotiated between the MCT 
operator and the shipping company. The handling time for 
ship s at the assigned berthing position is calculated based 
on the total number of containers loaded on that ship and the 
requested handling productivity. Note that this study adopts 
a data set for implementation with precomputed handling 
times for all arriving vessels. However, the handling produc-
tivity is reduced if the vessel is assigned to a berth position 
other than its preferred berthing position (PBP) [11, 12]. 
The PBP typically depends on vessel characteristics, such 
as the vessel length or vessel load as well as port-related 
considerations, such as the number of available quay cranes 
of the berthing area allocated to a particular ship. Hence, 
the major cause of handling productivity reduction is the 
increased loading/unloading and transfer time of containers 
from the assigned (suboptimal) berth to storage.

Finally, each ship s specifies its own estimated (or 
requested) time of departure ETDs and the MCT is supposed 
to complete the tasks (loading/unloading) of s before the 
ETDs , ∀s ∈ S . Otherwise, the MCT is liable to pay a late 
departure penalty cost LDCs for the duration of the delay 
(e.g., calculated in EURO/hour) to the shipping companies. 
Overall, the aim of the MCT is to minimize the total waiting, 
handling, and late departure costs for all arriving vessels at 
the port.

Mathematical Formulation

Before disclosing the mathematical formulation of BAP, we 
list the assumptions that are considered in our work.

• The total number of arriving ships at the planning hori-
zon is known.

• Each berth position is able to handle only one vessel at a 
particular time.

• A ship takes consecutive time intervals until loading/ 
unloading completes (i.e., no shifting).

• The ETA and ETD for each vessel are known and will 
not change.

• Estimated processing time for each vessel is known or 
can be easily calculated.

• Each ship has a preferred berthing position and it is 
known.

• Each ship can berth and be served at a set of known 
berthing positions.

• All berths are idle at the start of the time horizon.

• The length of the wharf is known.

The total processing cost of a vessel s that is scheduled for 
berthing at position BPs at time BTs includes a waiting cost, 
a handling cost, and late departure penalty, expressed by the 
following function:

The first term in Eq. (1), WTs ⋅WCs , represents the waiting 
cost when a vessel has to wait for berthing. The waiting time 
WTs of vessel s is calculated as the difference between the 
berthing time BTs and the planned time of arrival ETAs:

The second term ( HTs ⋅ (HCs + f (s,BPs) ) in Eq. (1) corre-
sponds to the total handling cost for loading or unloading 
containers, which is proportional to the handling time. Basi-
cally, the handling time HTs of any ship s depends on the 
total volume of containers to be loaded or unloaded on the 
vessel, the number of quay cranes available at this berth, and 
the average handling productivity of the cranes. However, in 
this study, we assume handling time as an input for solving 
BAP, as considered in [27]. Even though we consider the 
handling time as input in this work, we can easily extend 
our formulation to compute the handling time based on the 
vessel’s load and quay crane characteristics.

Furthermore, unlike our previous work [10], this study 
considers a new aspect of the handling cost. Without loss of 
generality, we also introduce the function f (s,BPs) , which 
will penalize the handling cost based on the assigned berth-
ing position BPs . In this work, we use the following formu-
lation for f:

which will penalize the total service cost based on the 
absolute difference between the assigned berthing position 
BPs and the preferred berthing position PBPs for the entire 
duration of handling that a ship spends at the non-optimal 
position. The factor NBCs defines the penalty cost for ship 
s against non-optimal berthing position per unit (meter) dis-
tance. In order to NBCs to be comparable to the handling 
cost HCs , we set NBCs as the ratio of HCs to the length of 
the wharf W. However, the function f can be easily adjusted 
to account for other, more complex practical scenarios. For 
example, if a particular ship s cannot be accommodated 
at some berthing positions, f can return an infinite cost to 
ensure that s will not be assigned to one of those positions.

The final term in Eq. (1), LDTs ⋅ LDCs , computes the 
late departure penalty when a vessel departs after its esti-
mated time of departure. The delayed departure time LDTs 

(1)

Cost
(

s,BPs,BTs
)

= WTs ⋅WCs + HTs ⋅
(

HCs + f (s,BPs)
)

+ LDTs ⋅ LDCs.

(2)WTs = BTs − ETAs, ∀ s ∈ S.

(3)f
(
s,BPs

)
= ||BPs − PBPs

|| ⋅ NBCs,
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of vessel s (if any) is calculated as the difference between 
the time s completes its operations and the estimated time 
of departure ETDs:

The goal of the dynamic and continuous berth allocation 
problem is to find the optimal berthing positions and times 
for all vessels such that the total processing cost is mini-
mized, as shown by the following objective function:

subject to the following set of constraints:

(4)LDTs = max
{
BTs + HTs − ETDs, 0

}
, ∀ s ∈ S.

(5)��������

∑

s ∈ S

∑

b ∈ B

∑

t ∈ T

xsbt ⋅ Cost
(
s,BPs,BTs

)
,

(6)xsbt ∈ {0, 1}, ∀ s ∈ S, b ∈ B, t ∈ T

(7)
∑

b ∈ B

∑

t ∈ T

xsbt = 1, ∀ s ∈ S

(8)BTs ≥ ETAs, ∀ s ∈ S

(9)||BTs − BTs�
|| ≥ SET, ∀ s, s� ∈ S

(10)BPs + Ls ≤ W, ∀ s ∈ S

(11)
∑

s�≠s ∈ S

BPs+Ls∑

b=BPs−Ls� +1

BTs+HTs∑

t=BTs−HTs� +1

xs�bt = 0, ∀ s ∈ S.

In Eq. (6), the variable xsbt is 1 if vessel s is assigned 
to berthing position b at berthing time t, and 0 otherwise. 
Constraint (7) ensures that each arrived ship at the MCT 
will be assigned at a particular berthing position only once 
during the planning time. Constraint (8) warrants that the 
scheduled berthing time BTs of ship s must always be later 
than or equal to its planned time of arrival ETAs . Constraint 
(9) ensures a minimum safety entrance time between berth-
ing times of any two ships, s and s′ , since most ports will 
only berth one ship at a time due to physical constraints at 
the port’s entrance. Constraint (10) guarantees that the berth-
ing position BPs of ship s plus its length Ls will always be 
less than or equal to the total length W of the wharf. Finally, 
constraint (11) ensures that no two ships can share (part of) 
the same berth during the handling times of the two ships. 
For instance, suppose a ship s is planned to be berthed at 
time 5 h, has handling time equal to 4 h, utilizes berthing 
position 500 m, and its length is 300 m as shown in Fig. 2. 
According to constraint (11), no other ship can use berthing 
positions from 500 to 800 m (as length of ship s is 300 m) 
in the time interval 5–9 h. In addition, a second ship s′ with 
length 200 m and handling time 3 h cannot use the berthing 
positions from 301 to 800 m in the time interval 3–9 h as it 
would overlap with ship s. Visually, this constraint ensures 
that the two rectangles denoting the time intervals and berth-
ing positions allocated to the two vessels shown in Fig. 2 
can never overlap.

As discussed earlier in Section “Introduction”, the case 
of the the discrete berthing layout is a basic variation of the 

Fig. 2  Berth allocation example 
for ship s (blue square) with 
BP

s
= 500 and BT

s
= 5 and 

ship s′ (green square) with 
BP

s�
= 200 and BT

s�
= 2 . The 

red dotted square shows the 
solution area that is not valid for 
ship s′ according to constraint 
(11)
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continuous layout scenario. If the berthing layout is discrete, 
then each berthing position b represents a specific berth. The 
objective function shown in Eq. 5 remains the same and con-
straints (6)–(9) still apply, whereas constraints (10) and (11) 
are, respectively, replaced by the following two constraints:

Specifically, constraint (12) ensures that the length Ls of 
ship s is less than or equal to the length Lb of berth b that is 
assigned to ship s. Finally, constraint (13) guarantees that a 
berth is never assigned to two ships during the same time 
intervals.

Proposed and Benchmark Approaches

In this section, we uncover the details of the proposed 
method (i.e., CSA) and state-of-the-art heuristic-based popu-
lar approach, i.e., GA.

Cuckoo Search Algorithm

CSA is a swarm-based metaheuristic optimization algorithm 
that was developed by Yang et al. [28]. The CSA emulates 
the breeding behavior of some cuckoo species, which have 
a fascinating reproduction mechanism. In particular, some 
cuckoos lay their eggs in nests of other birds (often nests of 
other species’ nests), where they may discard eggs of other 

(12)Ls ≤ Lb, ∀ s ∈ S, b = BPs

(13)
∑

s�≠s ∈ S

BTs+HTs∑

t=BTs−HTs� +1

xs�bt = 0, ∀ s ∈ S, b = BPs.

birds in order to enhance the hatching ratio of their own 
eggs. Then, the host birds take care of cuckoo eggs as they 
presume that the eggs belong to them. Nonetheless, some-
times the host birds distinguish between their own eggs and 
the alien eggs. Accordingly, either the discovered alien eggs 
are thrown out of the current nest or new nests are built in 
new locations. Inspired by this particular mechanism of lay-
ing eggs by the cuckoo birds, the following three standard 
rules are adopted to employ CSA for optimization problems 
[28]: 

1. each cuckoo lays one egg at a time at a randomly chosen 
nest;

2. the best nests with high-quality eggs will not be removed 
and will be carried over to the next generation;

3. the quantity of host nests is fixed and the egg dumped by 
a cuckoo is discovered by a host bird with a probability 
p� ∈ (0, 1).

In this study, each nest denotes a solution set that includes 
the berthing times and berthing positions for all arriving 
vessels. An egg represents either a berthing position or time, 
while a cuckoo egg represents a new (and better) berthing 
position or time. The total number of host nests reflects the 
total search space at each iteration of the algorithm. In this 
work, 100 host nests are considered and each nest contains 
2N eggs, where N is the total number of vessels. Hence, 
the total number of eggs in a nest is double the total num-
ber of arriving vessels. Overall, the high-level goal of the 
algorithm is to use cuckoo eggs (better solutions) to replace 
not-so-good eggs in the nests.
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Algorithm 1 presents the pseudocode of the Cuckoo 
Search Algorithm, which begins with a randomly distributed 
initial population of k=100 host nests over the search space 
(line #1). In each iteration of the algorithm, the reproduction 
step is performed first, where new solutions are generated by 
replacing some existing eggs with cuckoo eggs in randomly 
selected nests (lines #3–8). The rationale for the egg replace-
ments is that if a cuckoo egg is very similar to a host egg, 
then this egg has lesser chances to be discovered. Thus, a 
random walk is performed through Lévy flights in order to 
generate new nests (i.e., new solutions):

where t denotes the current iteration number, Xi the solu-
tion for nest i, and � ( 𝛼 > 0 ) the step size. The ⊕ opera-
tion denotes entrywise multiplication. A random walk in 
Lévy flights is performed from a Lévy distribution with a 
scale parameter λ [29]. The primary aim of performing ran-
dom steps is to increase the possibility of finding the global 
solution instead of becoming stuck in a local optimum. A 
new solution replaces a current solution if its fitness score 
is lower than the fitness score of the current solution (lines 
#5–7). The fitness of each possible solution is evaluated 
using the objective function of the BAP presented in Eq. (5) 
and accounts for the total processing cost, which includes 
waiting, handling, and late departure penalty costs. In addi-
tion, it is possible for some cuckoo eggs to be discovered by 
host birds with a discovering probability p� . In our work, p� 
is set to 0.45 as reported in [28]. In this case, the nests with 
the discovered cuckoo eggs are abandoned and new ones 
are built; as a result, the exploration of the search space is 
enhanced (lines #9–13). Finally, the best solution across all 
iterations is kept (line #14). The above steps repeat until 
either the total number of iterations is reached (which equals 
100 in this work) or there has been no fitness improvement 
for some iterations.

Genetic Algorithm

GA is one of the most popular algorithms from the 
metaheuristic family and is based on the evolution process 
in natural systems, i.e., Darwin’s principles of survival of 
the fittest individuals [30]. Since GA has a high convergence 
rate compared to most metaheuristics, it can solve big and 
high complexity problems relatively quickly. GA is a popula-
tion-based approach that finds a better solution by managing 
a population that contains various possible solutions, which 
are revised generation to generation by employing several 
genetic operators, including selection, crossover, and muta-
tion. The complete working procedure of GA consists of the 
following six steps [31].

(14)X
(t+1)

i
= X

(t)

i
+ 𝛼 ⊕ Levy(λ),

Initial population generation: A random population of 
different possible solutions (chromosomes) is generated at 
the first step. A single solution is known as a gene, a solution 
set is known as a chromosome, and all solution sets form a 
population.

Fitness evaluation: The fitness values of all solutions are 
evaluated to demonstrate the goodness of solutions.

Selection: The selection phase aims to select a couple 
of fittest individuals (parents), which are used for the next 
generation. There are more chances for the selection of indi-
viduals for reproduction having the best fitness value. A few 
of the fittest individuals are selected as parents for the next 
generation.

Crossover: Crossover is employed to produce offsprings, 
where, a child adopts one portion of its characteristics from 
one parent and the other part from the second parent.

Mutation: A mutation operator is also applied to some 
portion of the solutions in the new generation to avoid pre-
mature convergence and maintain diversity in the popula-
tion. In addition, it also ensures that the probability of any 
solution is never zero.

Termination of algorithm: The fitness values of the new 
population are calculated and the same process repeats until 
conditions of termination are met. Termination conditions 
include maximum available computation time, maximum 
iterations, and a maximum number of generations.

Experimental Results

In this section, we present the settings, data sets, and results 
of our extensive berth allocation simulations. In addition to 
the CSA method, we implemented a popular population-
based heuristic method (i.e., GA) proposed in the recent 
literature [32], as well as the exact MILP approach. The 
implemented algorithms are coded in MATLAB 2019b on 
a Windows 10 PC with COREi7 processor and 8GB RAM.

Table 2  One-hour interval data set employed for experiments [27]

Ship # ETA HT ETD PBP LoS

1 4 3 8 778 128
2 5 5 11 1416 113
3 10 5 15 957 334
4 4 2 8 1437 423
5 13 3 16 362 173
6 15 1 18 1015 391
7 11 3 15 434 338
8 6 2 9 1008 140
9 9 1 11 1043 302
10 2 2 5 102 194
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For our experiments, two data sets were used. The first 
problem data set is taken from Şahin et al. [27] and shown 
in Table 2. The data set contains a number of arriving ships 
in a day along with the estimated arrival time, handling 
time, estimated departure time, preferred berth position, 
and length for each arriving ship. This data set was adapted 
to generate more ships within the same planning horizon of 
1 day. For instance, the minimum and maximum handling 
times for any ship are 2 h and 5 h, respectively (see column 
#3 in Table 2); so, we generate randomly handling times for 
all ships in between 2 and 5 h; the same policy is used for 
the other parameters. In order to stress-test the algorithms 
and also to test other planning horizons, a second larger data 
set was generated randomly by employing uniform distribu-
tion with realistic settings for all parameters, and a planning 
horizon of up to 1 week.

The quay is continuous and has a length of 2000 m in 
both data sets. For the cost calculations of the different algo-
rithms, we have used the values 10, 5, and 5 Euros per hour 
handling cost, waiting cost, and late departure cost, respec-
tively [27]. When a vessel is moored at a berth position other 
than its optimal berthing position, a penalty based on the 
absolute difference between the assigned berth position and 
the optimal berthing position is added to the handling cost. 
The non-optimal berthing cost (NBC) is calculated as fol-
lows: NBC = HCs∕W = 0.005 Euros per meter.

Furthermore, unlike our previous [10] and many other 
studies (e.g., [27, 32]), we use a time interval of less than an 
hour for the experiments, i.e., 30 min, to make the problem 
more practical and to reduce the time loss in the simula-
tions. For example, if a ship takes 5 h and 30 min to load 
and unload, a time interval of 1-h wastes 30 min, since the 

Fig. 3  Berth allocation solution, when we consider 30-min time interval, generated by a CSA, b GA, and c MILP
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algorithms work with a time interval of 1 h and cannot 
schedule a ship before the next hour, i.e., 6. A more fine-
grained time interval of 30 min avoids this situation. The 
same problem instances were used in the case of the 30-min 
time intervals; however, all times in Table 2 are multiplied 
by two to generate 30-min values, since the original data 
contain values based on 1-h time interval.

Next, we present simulation results when our proposed 
and benchmark methods are implemented considering a 
30-min time interval. When we implement the 30-min time 
interval, this study considers a new constraint, shown in 
Eq. (9), which guarantees a minimum and realistic safety 
entrance time (SET) of one 30-min time interval between 
the berthing times of any two vessels. This constraint is yet 
another benefit derived from using a smaller time interval 
as using a 1-h SET would be too long and wasteful. The 
results presented in Fig. 3 show the three solutions for berth 
assignment when we consider a 30-min time interval and the 
ten arriving ships shown in Table 2. All three approaches 
allocate ships to the available berth positions and time slots 
based on the primary objective of this study, which is to 
minimize the total processing cost, as shown in Eq. (5). In 
Fig. 3, the vertical axis shows the berth positions, while 
the horizontal axis shows time divided into 30-min time 
intervals. Each rectangle in this figure denotes the berthing 
periods and berthing positions assigned to an arriving vessel. 
The label within a rectangle indicates the ship index. Unlike 

the previous study, a safety entrance time can be noticed as 
no two ships berth at the same time. By comparing the sub-
figures, it becomes evident that the three different algorithms 
offer three different solutions to the problem, with some ves-
sels berthed at different positions and/or berthing times. For 
example, the estimated arrival time of ship 5 is the 26th time 
slot (30-min each time slot). The berthing time proposed by 
MILP and CSA is the 26th slot, while GA chose the 28th 
slot because of the berth placement of ship 7. Hence, ship 5 
does not have to wait before berthing when using the CSA 
and MILP approaches. On the contrary, ship 5 has to wait 
for 1 h (2 slots of 30 min) if GA is employed.

Figure 4 shows the waiting times incurred by the ten 
ships when using the three approaches. From Fig. 4, it can 
be seen that only one vessel has to wait (for 30 min only) 
when MILP is used. However, our newly proposed CSA 
method provides a solution with a maximum waiting time 
of two time periods (30 min each) for any ship and only two 
ships have to wait before berthing. In contrast, when using 
GA, five ships have to wait for optimal berthing and the 
maximum waiting time for ship 2 is five time slots (i.e., 2.5 
h). Such waiting times are very high and in turn can cause 
late departures. From these results, we can conclude that 
the CSA method outperforms GA in terms of reducing the 
waiting times.

Figure 5 shows the requested departure times of all arriv-
ing ships and the proposed departure times by our developed 

Fig. 4  Ships’ waiting times 
when using CSA, GA, and 
MILP approaches
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Fig. 5  Requested and planned 
departure times for each ship 
using CSA, GA, and MILP

Fig. 6  Absolute difference 
between the berthing position 
and the preferred berthing posi-
tion of the ten ships provided by 
CSA, GA, and MILP
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and compared algorithms, i.e., CSA, GA, and MILP. From 
this figure, it can be seen that no vessel departs late using 
either MILP or our proposed CSA approach. On the other 
hand, with GA, two ships depart late: ships 2 and 5 are three 
slots and two slots late, respectively. Once again, we con-
clude that CSA shows higher performance in minimizing 
late departures compared to GA.

The results presented in Fig. 6 show the absolute dif-
ference between the optimal berthing positions and berth-
ing positions of the 10 ships provided by the implemented 
algorithms, i.e., CSA, GA, and MILP. We can observe from 
this figure that MILP always provides optimal berthing posi-
tions except for only two ships, namely, ships 4 and 7. CSA’s 
behavior in terms of berth placement is similar to MILP as 
it also uses non-optimal berthing positions for ships 4 and 
7, plus some very small deviations for three more ships. 
On the contrary, 8 out of the 10 ships are moored to other 
than optimal berthing positions when using GA, albeit with 
small differences. Even though ships 4 and 7 berth at (near) 
optimal positions with GA, they cause major waiting times 
and departure delays for ships 2 and 5, respectively, lead-
ing to higher cost solutions. Overall, by considering all 
results presented so far, it is evident that it is not possible to 
achieve both zero waiting times and optimal berthing posi-
tions for all ships from Table 2. The best solutions comes 
from delaying ship 4 by 30 min (due to the safety entrance 
time constraint) and using non-optimal berthing positions 
from ships 4 and 7 in order to avoid delays for other ships. 

In this regard, the solution provided by CSA is much closer 
to the optimal MILP solution compared to the GA solution.

For comparison purposes, the total processing cost along 
with the computation times for all implemented algorithms, 
i.e., CSA, GA, and MILP, are shown in Table 3. In addition, 
we have also varied the number of arriving ships to study 
the scalability of the proposed method. We tested the three 
approaches on multiple instances, where 10–30 ships and a 
30-min time interval are considered, while all other param-
eters are the same, i.e., the length of the quay, the arrival 
pattern of the ships, and the berth layout. It can be seen 
from Table 3 that MILP provides the optimal solution in 
terms of minimum processing cost in all cases; however, our 
proposed CSA-based algorithm also provides a near-optimal 
solution in all cases when we compare it with the alternative 
GA approach. For example, the results of the first instance 
show that MILP achieves the lowest cost of 285 Euros, as 
expected, CSA also has a lower cost as compared to GA, 
which is 322 Euros; however, total processing cost with the 
GA is significantly higher (347 Euros). A similar pattern is 
observed for the other instances; the solutions proposed by 
CSA are only slightly costlier (ranging from 4.9 to 14.1%) 
than the optimal MILP solution, while the solutions of GA 
are more expensive (ranging from 11.9 to 20.5%). Further-
more, Table 3 also presents the computational time of all 
three algorithms when using 30-min time interval. It can be 
noticed from this table that GA has the minimum computa-
tional time and MILP has higher computational time. Our 

Table 3  Comparative 
analysis in terms of cost and 
computation time when using 
data instances from [27] with 
30-min time intervals

Method CSA GA MILP

No. No. ships Cost (€) Time (s) Cost (€) Time (s) Cost (€) Time (s)
1 10 302 0.94 347 0.21 288 207.26
2 15 434 1.26 470 0.30 395 318.84
3 20 595 1.43 620 0.21 535 404.59
4 25 680 2.01 688 0.57 615 530.96
5 30 827 3.08 832 0.98 725 644.01

Table 4  Comparative 
analysis in terms of cost and 
computational time when 
using randomly generated data 
instances with 30-min time 
intervals

Method CSA GA MILP

No. No. ships Cost (€) Time (s) Cost (€) Time (s) Cost (€) Time (s)
1 10 355 1.16 380 0.40 305 195.25
2 20 702 1.71 722 0.42 620 333.29
3 30 1005 2.83 1020 0.56 895 557.70
4 40 1322 4.99 1785 0.89 1080 719.98
5 50 1730 6.92 1792 1.56 1460 957.05
6 60 2102 5.07 2137 1.22 – –
7 70 2527 6.49 2597 1.91 – –
8 80 2990 1.29 3060 2.42 – –
9 90 3092 17.89 3215 4.94 – –
10 100 3635 12.82 3692 4.07 – –
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proposed CSA-based method takes only slightly higher time 
compared to GA (up to 3 s vs. 1 s) but provides better cost 
reduction. Compared to CSA, the MILP is orders of magni-
tude slower and takes on average 250× more computational 
time to solve the berth allocation problem.

In order to stress-test the algorithms, we also gener-
ated a larger synthetic data set with 20 uniformly random 
instances (10–100 vessels), 10 with 1-h interval and 10 with 
a 30-min interval. In addition, we increased the planning 
period from 1 day to 1 week when the number of ships is 
greater than 40. Table 4 shows a comparative analysis when 
using the data instances that were randomly generated with 
30-min time intervals. The overall trends in terms of cost are 
the same as before: MILP offers the lowest cost, followed 
closely by CSA (with 12.3–22.4% higher cost), while GA 
lead to the highest cost with up to 65.3% worse cost than 
the minimum. In terms of computation times, both GA and 
CSA scale well with very low running times, less than 5 
and 18 s, respectively. MILP, on the other hand, leads to 
much longer running times (3–16 min) that are about two 
orders of magnitude higher compared to CSA and grow 
super-linearly. To make matters worse, when the number 
of ships in the problem set becomes greater than 50, the 
MILP runs out of memory and thus it is unable to solve 
large problem instances. Overall, CSA is a very efficient 
approach that leads to near-optimal solutions in terms of 
total processing costs.

Finally, Fig. 7 shows the computation time of MILP when 
using a 1-h or a 30-min time interval as we increase the num-
ber of ships in the problem data set. In both scenarios, the 
computation time grows super-linearly, with the 30-min time 
interval case growing much more aggressively, even though 
the number of intervals is only double compared to the 1-h 
interval case. As previously mentioned, MILP runs out of 
memory and cannot solve problem instances with more than 
50 cases when using 30-min intervals. Therefore, MILP 
cannot be used for larger, more realistic problem sizes; an 
observation that has been reported previously in other stud-
ies, such as requiring over 100 h of CPU time for real-world 
instances [32]. Such times are certainly not acceptable in the 
context of MCT operations.

Conclusions

This study focuses on the berth allocation problem with 
dynamic ship arrivals, where a metaheuristic-based cuckoo 
search algorithm (CSA) is proposed to solve the BAP. In 
addition, we implemented two benchmark methods for 
comparison, a well-known metaheuristic genetic algorithm 
(GA) and an exact approach (MILP). Unlike existing stud-
ies, and to make the problem more practical, a fine-grained 
time interval of 30 min is used in this study along with 
other practical constraints, such as a safety time distance 
between berths. The proposed and compared approaches 

Fig. 7  Computation time of 
MILP using random data 
(10–100 ships) when we con-
sider both time intervals, i.e., 1 
h and 30 min
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are implemented on multiple data instances generated from 
a benchmark data set. In addition, randomly (uniformly) 
generated data instances with up to 100 vessels and a plan-
ning horizon up to a week are used for experiments to test 
the flexibility and scalability of the proposed method. The 
results show that our proposed algorithm (CSA) has higher 
efficiency in terms of minimum processing cost for all 
incoming ships compared to GA. Compared to MILP, our 
proposed CSA algorithm provides a near-optimal solution 
at a fraction of the computation time. Moreover, when we 
implement all algorithms on large data sets, the MILP algo-
rithm runs out of memory and cannot provide an optimal 
solution in reasonable time. Overall, CSA beats GA in terms 
of processing cost and outperforms MILP in terms of com-
putation time, and thus provides near-optimal solutions in 
affordable computation times.
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