
Vol.:(0123456789)

SN Computer Science (2022) 3:325
https://doi.org/10.1007/s42979-022-01211-z

SN Computer Science

ORIGINAL RESEARCH

Enhanced Berth Allocation Using the Cuckoo Search Algorithm

Sheraz Aslam1 · Michalis P. Michaelides1 · Herodotos Herodotou1

Received: 13 September 2021 / Accepted: 15 May 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Berth allocation is one of the most important optimization problems in container terminals at ports worldwide. From both the
port operator’s and the shipping lines’ point of view, minimizing the time a vessel spends at berth and minimizing the total
cost of berth operations are considered fundamental objectives with respect to terminal operations. In this study, we focus on
the berth allocation problem (BAP), where berth positions are assigned to arriving ships with the objective of reducing the
total service cost, which includes waiting cost, handling cost, and several penalties, such as a penalty for late departure and a
penalty for non-optimal berth allocation. First, the BAP is formulated as a mixed-integer linear programming (MILP) model.
Since BAP is an NP-hard problem and cannot be solved by mathematical approaches in a reasonable time, a metaheuristic
approach, namely, a cuckoo search algorithm (CSA), is proposed in this study to solve the BAP. To validate the performance
of the proposed CSA-based method, we use two benchmark approaches, namely, the genetic algorithm (GA) and the optimal
MILP solution. Next, we conduct several experiments using a benchmark data set as well as a randomly-generated larger data
set. Simulation results show that the proposed CSA algorithm has higher efficiency in allocating berths within a reasonable
computation time than its counterparts.

Keywords Berth allocation problem · Intelligent sea transportation · Cuckoo search algorithm · Metaheuristic
optimization · Maritime container terminal

Introduction

Background and Motivations

The shipping industry covers 90% of the world seaborne
trade movements and 74% of the total goods that are
imported or exported in Europe travel with ships [1].
According to Hsu et al. [2], 60% of the total sea transport
is based on containers, which is also growing every year by

6.4%. Hence, the maritime container terminal (MCT) serves
as an important node in the shipping industry to deal with
increasing sea trade. Another recent report [3] stated that
worldwide ports have handled almost 701 million twenty-
foot equivalent units (TEUs) of containers in 2016. At the
same time, the throughput of container ports is also continu-
ously increasing, and the management of MCTs’ operations
is becoming a challenging task. As a critical and integral
part of the global transportation network, the MCTs serve
the cost-efficient delivery of various products in different
markets. Linear shipping companies use mega-ships in order
to carry large containers up to 20,000 TEUs [4]. Since the
MCTs are of such high value in the maritime industry, there
is an exigent need to enhance the operational efficiency of
MCTs by minimizing the total turnaround service times of
vessels and achieving competitive strategy along with cus-
tomer satisfaction. Moreover, port authorities always try to
optimize MCT operations by employing various strategies
for the efficient utilization of all the port resources.

MCT operations can be categorized into three major oper-
ational areas, namely, seaside, land-side, and yard-side oper-
ations, as presented in Fig. 1. Among all MCT operations,

This article is part of the topical collection “Vehicle Technology and
Intelligent Transport Systems” guest edited by Oleg Gusikhin and
Markus Helfert.

 * Herodotos Herodotou
 herodotos.herodotou@cut.ac.cy

 Sheraz Aslam
 sheraz.aslam@cut.ac.cy

 Michalis P. Michaelides
 michalis.michaelides@cut.ac.cy

1 Department of Electrical Engineering, Computer
Engineering and Informatics, Cyprus University
of Technology, Limassol, Cyprus

http://orcid.org/0000-0002-8717-1691
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01211-z&domain=pdf

 SN Computer Science (2022) 3:325 325 Page 2 of 15

SN Computer Science

the seaside operations are the most important as they affect
the overall performance of MCTs. Inefficient planning and
improper utilization of port resources may create several
issues, including congestion, long waiting times, and late
departures. For instance, 13,647 vessels arrived from Jan
to Sep 2019 at Port of Shanghai, China, from which almost
57% of vessels arrived late (more than 12 h) [5]. According
to another recent report presented in [6], the average wait-
ing times for vessels from port-to-berth are 2.2, 2.4, and 2.7
h in Malaysia, Dubai, and China, respectively. Michaelides
et al. [7] investigate the factors influencing the various
waiting times at the Port of Limassol, Cyprus, both from
a quantitative and a qualitative perspective. For shipping,
and particularly for short sea shipping, there are obvious
and immediate benefits from improving efficiency by sup-
porting all actors involved in the port call process to engage
more easily, to give shipping companies, port service provid-
ers, and ship agents better information and decision support
systems to boost their efficiency and that of their port [8].
Hence, MCTs’ operators need to employ suitable strategies
and approaches for proper utilization of the port resources
and to avoid the aforementioned issues.

These challenges have motivated us to focus on enhancing
seaside operations, and more specifically, the berth alloca-
tion problem (BAP). The BAP is a well-known problem that
aims to assigning berthing positions to arriving vessels at
the port in order to minimize or maximize a given objec-
tive function (e.g., minimize total waiting time, reduce late
departures, or maximize terminal performance). Before deal-
ing with the BAP, it is necessary to understand the prob-
lem environment. Based on the current literature, there are

two major factors affecting the BAP, i.e., the configuration
of quay/wharf and the arrival time of ships. Quays can be
configured in three different ways: (1) continuous berthing
layout, where arriving vessels can be moored at any loca-
tion along the wharf; (2) discrete berthing layout, where
the wharf is divided into a fixed number of berths; and (3)
hybrid berthing layout, where a mix of continuous and dis-
crete berthing layouts is encountered [9]. In terms of ves-
sel arrivals, there are two main types: (1) static arrivals,
where all the vessels are assumed to be at the MCT before
berth planning and (2) dynamic arrivals meaning that ves-
sels are not at the MCT before berth planning but instead
the expected time of arrival (ETA) is known for each vessel.
Static arrivals are a simple special case of dynamic arrivals
(where all ships are expected to arrive at the same time),
while the discrete berthing layout is a basic variation of the
more-complex continuous layout scenario. Thus, this study
focuses primarily on the continuous berthing layout together
with dynamic vessel arrivals (i.e., DC-BAP).

Contributions

The present study is an extended version of [10] and solves
the BAP with the aim of reducing the total service cost of
arriving ships, which includes waiting costs, handling costs,
as well as penalties for late departures. We first formulate
BAP as a mixed-integer linear programming (MILP) prob-
lem and solve it using the cuckoo search algorithm (CSA),
a metaheuristic computational intelligence approach that we
applied to BAP for the first time in [10]. Furthermore, we
enhance the BAP mathematical formulation with some new

Fig. 1 Illustration of MCT with
multiple berthing positions
assuming discrete and continu-
ous berthing layout

SN Computer Science (2022) 3:325 Page 3 of 15 325

SN Computer Science

practical constraints and features compared to the current
literature and our previous study [10], which include: (1) a
penalty for non-optimal berthing positions that is propor-
tional to the distance from the preferred berthing position,
(2) a safety time interval between consecutive berth arrivals
due to practical constraints present at the port entrance, and
(3) account for smaller time intervals, which offer better,
more fine-grained berth allocation decisions. We also imple-
ment two benchmark algorithms to verify the effectiveness
of our proposed algorithm, namely, genetic algorithm (GA)
and an exact approach (MILP). Extensive simulations were
performed on two types of data instances; the first one was
obtained from the existing literature (benchmark data) and
the second data set (it includes up to 100 arriving ships) was
generated based on real-world data (by uniform distribu-
tion). The simulation results show that the proposed CSA
method outperforms its counterparts in terms of reducing
service cost within a reasonable computation time.

Organization

The remainder of the paper is organized as follows. Litera-
ture review is presented in Section “Literature Review”.
Section “Problem Description” explains the investigated
problem and provides its mathematical formulation. Our
proposed CSA method along with the compared approach
is described in detail in Section “Proposed and Benchmark
Approaches” and simulation settings along with results are
presented in Section “Experimental Results”. Finally, Sec-
tion “Conclusions” concludes the paper.

Literature Review

Several approaches are reported in the literature that deal
with the BAP [11, 12]. These approaches may provide
exact solutions [13] or approximate (based on heuristic or
metaheuristic) solutions [14, 15]. However, approximate
approaches are more popular over exact methods due to
their efficiency in terms of computational complexity. The
authors of [14] present a solution of the BAP by employing
evolutionary algorithms (EAs), particle swarm optimiza-
tion (PSO), and differential evolution (DE). An EA-based
solution is developed in [15] to deal with BAP, while the
study presented in [16] proposed a simulated annealing (SA)
algorithm for the same problem. [13] developed a mixed-
integer linear programming (MILP) model to deal with the
BAP and a genetic algorithm (GA) is developed in [17] to
solve the BAP.

For the dynamic and continuous BAP (DC-BAP), there
have been significant efforts in the recent literature to solve
the problem using mainly metaheuristic and evolutionary
approaches. A GA-based approach is developed in [18] to

deal with the DC-BAP to minimize penalty costs for late
departures. In [19], the objectives of this study are to mini-
mize the total service cost and the total ship stay time at the
port. To solve the DC-BAP, a variant of the neighborhood
search method called adaptive large neighborhood search
(ALNS) algorithm is developed. The algorithm works based
on the principle of destroy and recreate, where at each itera-
tion some solutions are destroyed and new ones are gener-
ated in different ways to find the best solution according to
fitness criteria. The authors of [20] discuss DC-BAP with
the aim of minimizing total delays in departures. A GA-
based hybrid algorithm is developed by including some fea-
tures of the branch & bound (B&B) method. For compari-
son purposes, the hybrid method along with counterparts
(i.e., standard GA and CPLEX) are implemented on differ-
ent data sets, which include small and large data instances.
The results from experiments show the effectiveness of the
hybrid method. Another DC-BAP study is carried out in [21]
with the primary objective of reducing delays in departures.
This study considers some new tidal constraints to make
the problem more realistic. The DC-BAP is formulated in
three different ways, i.e., standard MILP, time-indexed vari-
ables-based MILP (TI-MILP), and MILP based on sequence
variables (S-MILP). Furthermore, the authors develop some
data sets based on real-time data, which can be utilized in
the future as benchmark data sets. Subsequently, these three
models are solved on a CPLEX solver and simulation results
demonstrate that the time-indexed-based MILP achieves
higher efficiency with lower computation time. The DC-
BAP is investigated in another study [22], where the major
aim of the study is to perform a robust berth allocation and
to achieve minimum turnaround-time. A recently developed
metaheuristic, namely, grey wolf optimization (GWO) is
adopted to handle DC-BAP. Moreover, several uncertainties
are also taken into account to make the problem more practi-
cal, i.e., uncertainty in arrival times and operational times of
vessels. The results from experiments confirm the efficiency
of GWO in solving the BAP with uncertainties over state-
of-the-art methods, such as GA and CPLEX. Another study
[23] solves a new version of BAP, where multiple quays
instead of a single quay and continuous berthing layouts are
assumed. They formulate this problem as an integer linear
model and then solve it using GA. To confirm the effective-
ness of the proposed method, several simulations are per-
formed with different sized data sets and the results show the
effectiveness against the compared approaches.

For the discrete and dynamic BAP (DD-BAP), there have
also been significant efforts in the recent literature to solve
the problem using mainly metaheuristic and evolutionary
approaches. A genetic algorithm (GA) is adopted to solve
the DD-BAP in [24], where the fundamental motive is to
minimize service time of arriving ships that includes wait-
ing time and handling time. Furthermore, unlike existing

 SN Computer Science (2022) 3:325 325 Page 4 of 15

SN Computer Science

studies, the authors of this work modeled BAP such that each
berth has different handling productivity. The results from
simulations show that their proposed GA-based approach
can solve larger instances as compared to a CPLEX solver.
Another study presented in [25] also develops a heuristic-
based GA to solve the same problem, i.e., DD-BAP. The
authors construct a mixed-integer programming (MIP)
model that considers a discrete berthing layout along with
dynamic vessel arrivals with the aim of reducing delays in
departures as well as shifting workload in night-times. Sev-
eral experiments were also conducted to affirm the perfor-
mance of the proposed GA method and results show the
efficacy of the newly developed algorithm over counterparts.
The authors of [26] proposed an evolutionary-based method,
i.e., an enhanced differential evolution (EDE) algorithm, to
deal with DD-BAP. This study has two primary objectives:
(i) reducing delays in ships’ departure times and (ii) total
handling time minimization. Furthermore, to check the pro-
ductivity of the proposed EDE method, several benchmark
approaches are also implemented, i.e., GSSP, tabu search,
and particle swarm optimization (PSO). Results are provided
demonstrating the superiority of the proposed method over
counterparts in terms of the aforementioned objectives.

In this paper, we propose using a cuckoo search algo-
rithm (CSA) to solve the berth allocation problem. The CSA
was first introduced in our previous work [10] for solving
the dynamic and continuous berth allocation problem (DC-
BAP). In this study, we extend the BAP mathematical for-
mulation by considering penalty for non-optimal berth posi-
tion, safety time interval between consecutive berth arrivals,
and account for smaller time intervals (30-min time inter-
val), which offer better, more fine-grained berth allocation
decisions.

Problem Description

This section first describes in detail the BAP considered
in this work, followed by a mathematical formulation as a
mixed-integer linear programming problem. Table 1 lists all
abbreviations and notations used in this section and through-
out the paper.

In the dynamic and continuous berth allocation problem,
the MCT has one or more continuous berthing layouts of
known lengths that serve vessels arriving at different points
in time (i.e., in a dynamic fashion). Let B = {1, 2,… ,M}
denote the set of all possible berthing positions on the wharf
of the port. Typically, the BAP considers a particular time
period of vessel arrivals, such as the next 48 h. Hence, time
is modeled as a set of time intervals T = {1, 2,… ,K} that
can represent some time duration of interest (e.g., an hour
or a 30-min interval). Finally, let S = {1, 2,… ,N} denote
the set of ships arriving at the terminal. For each ship,

the estimated time of arrival (ETA), the preferred berth-
ing position (PBP), the ship’s length, and the estimated (or
requested) time of departure (ETD) are known in advance.

In the ideal scenario, as soon as a vessel arrives at the
MCT, it should be moored at its preferred berthing position.
If the MCT cannot serve the vessel at the time of arrival,
the vessel must be towed to the waiting area of the terminal,
as shown in Fig. 1, and/or berth at a non-optimal berthing
position. In the first scenario, the number of ships in the
waiting area increases, causing congestion and navigational
challenges to arise at the seaside of the terminal. In this

Table 1 Nomenclature

Name Explanation

Acronyms
 BAP Berth allocation problem
 BP Berthing position
 CSA Cuckoo search algorithm
 DC-BAP Dynamic and continuous BAP
 ETA Estimated time of arrival
 ETD Estimated time of departure
 GA Genetic algorithm
 HT Handling time
 LoS Length of ship
 MCT Maritime container terminal
 PBP Preferred berthing position
 QCs Quay cranes
 WC Waiting cost
 WT Waiting time

Indices
 b ∈ B = {1, 2,… ,M} Berthing position
 s ∈ S = {1, 2,… ,N} Individual ship
 t ∈ T = {1, 2,… ,K} Single time period

Notations
 BP

s
Berthing position of ship s

 BT
s

Berthing time of s
 ETA

s
Estimated time of arrival of s

 ETD
s

Estimated time of departure of s
 HC

s
Handling cost of s per time period

 HT
s

Handling time of s
 L

b
Length of berth b (only for discrete

berthing layout)
 L

s
Length of ship s

 LDC
s

Late departure cost of s per time period
 LDT

s
Late departure time of s

 NBC
s

Non-optimal berthing cost of s
 PBP

s
Preferred berthing position of s

 SET Safety entrance time
 W Length of wharf
 WC

s
Waiting cost of s per time period

 WT
s

Waiting time of s

SN Computer Science (2022) 3:325 Page 5 of 15 325

SN Computer Science

case, the MCT incurs an extra waiting cost WCs against the
ship s for the duration of s’ waiting time (e.g., calculated in
EURO/hour).

Once the ships are moored at their assigned berthing
position, the quay cranes (QCs) start working in order to
load/unload containers. Container handling resources (e.g.,
number of QCs, gantry cranes) are allocated to ships based
on the handling rate that is negotiated between the MCT
operator and the shipping company. The handling time for
ship s at the assigned berthing position is calculated based
on the total number of containers loaded on that ship and the
requested handling productivity. Note that this study adopts
a data set for implementation with precomputed handling
times for all arriving vessels. However, the handling produc-
tivity is reduced if the vessel is assigned to a berth position
other than its preferred berthing position (PBP) [11, 12].
The PBP typically depends on vessel characteristics, such
as the vessel length or vessel load as well as port-related
considerations, such as the number of available quay cranes
of the berthing area allocated to a particular ship. Hence,
the major cause of handling productivity reduction is the
increased loading/unloading and transfer time of containers
from the assigned (suboptimal) berth to storage.

Finally, each ship s specifies its own estimated (or
requested) time of departure ETDs and the MCT is supposed
to complete the tasks (loading/unloading) of s before the
ETDs , ∀s ∈ S . Otherwise, the MCT is liable to pay a late
departure penalty cost LDCs for the duration of the delay
(e.g., calculated in EURO/hour) to the shipping companies.
Overall, the aim of the MCT is to minimize the total waiting,
handling, and late departure costs for all arriving vessels at
the port.

Mathematical Formulation

Before disclosing the mathematical formulation of BAP, we
list the assumptions that are considered in our work.

• The total number of arriving ships at the planning hori-
zon is known.

• Each berth position is able to handle only one vessel at a
particular time.

• A ship takes consecutive time intervals until loading/
unloading completes (i.e., no shifting).

• The ETA and ETD for each vessel are known and will
not change.

• Estimated processing time for each vessel is known or
can be easily calculated.

• Each ship has a preferred berthing position and it is
known.

• Each ship can berth and be served at a set of known
berthing positions.

• All berths are idle at the start of the time horizon.

• The length of the wharf is known.

The total processing cost of a vessel s that is scheduled for
berthing at position BPs at time BTs includes a waiting cost,
a handling cost, and late departure penalty, expressed by the
following function:

The first term in Eq. (1), WTs ⋅WCs , represents the waiting
cost when a vessel has to wait for berthing. The waiting time
WTs of vessel s is calculated as the difference between the
berthing time BTs and the planned time of arrival ETAs:

The second term (HTs ⋅ (HCs + f (s,BPs)) in Eq. (1) corre-
sponds to the total handling cost for loading or unloading
containers, which is proportional to the handling time. Basi-
cally, the handling time HTs of any ship s depends on the
total volume of containers to be loaded or unloaded on the
vessel, the number of quay cranes available at this berth, and
the average handling productivity of the cranes. However, in
this study, we assume handling time as an input for solving
BAP, as considered in [27]. Even though we consider the
handling time as input in this work, we can easily extend
our formulation to compute the handling time based on the
vessel’s load and quay crane characteristics.

Furthermore, unlike our previous work [10], this study
considers a new aspect of the handling cost. Without loss of
generality, we also introduce the function f (s,BPs) , which
will penalize the handling cost based on the assigned berth-
ing position BPs . In this work, we use the following formu-
lation for f:

which will penalize the total service cost based on the
absolute difference between the assigned berthing position
BPs and the preferred berthing position PBPs for the entire
duration of handling that a ship spends at the non-optimal
position. The factor NBCs defines the penalty cost for ship
s against non-optimal berthing position per unit (meter) dis-
tance. In order to NBCs to be comparable to the handling
cost HCs , we set NBCs as the ratio of HCs to the length of
the wharf W. However, the function f can be easily adjusted
to account for other, more complex practical scenarios. For
example, if a particular ship s cannot be accommodated
at some berthing positions, f can return an infinite cost to
ensure that s will not be assigned to one of those positions.

The final term in Eq. (1), LDTs ⋅ LDCs , computes the
late departure penalty when a vessel departs after its esti-
mated time of departure. The delayed departure time LDTs

(1)

Cost
(

s,BPs,BTs
)

= WTs ⋅WCs + HTs ⋅
(

HCs + f (s,BPs)
)

+ LDTs ⋅ LDCs.

(2)WTs = BTs − ETAs, ∀ s ∈ S.

(3)f
(
s,BPs

)
= ||BPs − PBPs

|| ⋅ NBCs,

 SN Computer Science (2022) 3:325 325 Page 6 of 15

SN Computer Science

of vessel s (if any) is calculated as the difference between
the time s completes its operations and the estimated time
of departure ETDs:

The goal of the dynamic and continuous berth allocation
problem is to find the optimal berthing positions and times
for all vessels such that the total processing cost is mini-
mized, as shown by the following objective function:

subject to the following set of constraints:

(4)LDTs = max
{
BTs + HTs − ETDs, 0

}
, ∀ s ∈ S.

(5)��������

∑

s ∈ S

∑

b ∈ B

∑

t ∈ T

xsbt ⋅ Cost
(
s,BPs,BTs

)
,

(6)xsbt ∈ {0, 1}, ∀ s ∈ S, b ∈ B, t ∈ T

(7)
∑

b ∈ B

∑

t ∈ T

xsbt = 1, ∀ s ∈ S

(8)BTs ≥ ETAs, ∀ s ∈ S

(9)||BTs − BTs�
|| ≥ SET, ∀ s, s� ∈ S

(10)BPs + Ls ≤ W, ∀ s ∈ S

(11)
∑

s�≠s ∈ S

BPs+Ls∑

b=BPs−Ls� +1

BTs+HTs∑

t=BTs−HTs� +1

xs�bt = 0, ∀ s ∈ S.

In Eq. (6), the variable xsbt is 1 if vessel s is assigned
to berthing position b at berthing time t, and 0 otherwise.
Constraint (7) ensures that each arrived ship at the MCT
will be assigned at a particular berthing position only once
during the planning time. Constraint (8) warrants that the
scheduled berthing time BTs of ship s must always be later
than or equal to its planned time of arrival ETAs . Constraint
(9) ensures a minimum safety entrance time between berth-
ing times of any two ships, s and s′ , since most ports will
only berth one ship at a time due to physical constraints at
the port’s entrance. Constraint (10) guarantees that the berth-
ing position BPs of ship s plus its length Ls will always be
less than or equal to the total length W of the wharf. Finally,
constraint (11) ensures that no two ships can share (part of)
the same berth during the handling times of the two ships.
For instance, suppose a ship s is planned to be berthed at
time 5 h, has handling time equal to 4 h, utilizes berthing
position 500 m, and its length is 300 m as shown in Fig. 2.
According to constraint (11), no other ship can use berthing
positions from 500 to 800 m (as length of ship s is 300 m)
in the time interval 5–9 h. In addition, a second ship s′ with
length 200 m and handling time 3 h cannot use the berthing
positions from 301 to 800 m in the time interval 3–9 h as it
would overlap with ship s. Visually, this constraint ensures
that the two rectangles denoting the time intervals and berth-
ing positions allocated to the two vessels shown in Fig. 2
can never overlap.

As discussed earlier in Section “Introduction”, the case
of the the discrete berthing layout is a basic variation of the

Fig. 2 Berth allocation example
for ship s (blue square) with
BP

s
= 500 and BT

s
= 5 and

ship s′ (green square) with
BP

s�
= 200 and BT

s�
= 2 . The

red dotted square shows the
solution area that is not valid for
ship s′ according to constraint
(11)

SN Computer Science (2022) 3:325 Page 7 of 15 325

SN Computer Science

continuous layout scenario. If the berthing layout is discrete,
then each berthing position b represents a specific berth. The
objective function shown in Eq. 5 remains the same and con-
straints (6)–(9) still apply, whereas constraints (10) and (11)
are, respectively, replaced by the following two constraints:

Specifically, constraint (12) ensures that the length Ls of
ship s is less than or equal to the length Lb of berth b that is
assigned to ship s. Finally, constraint (13) guarantees that a
berth is never assigned to two ships during the same time
intervals.

Proposed and Benchmark Approaches

In this section, we uncover the details of the proposed
method (i.e., CSA) and state-of-the-art heuristic-based popu-
lar approach, i.e., GA.

Cuckoo Search Algorithm

CSA is a swarm-based metaheuristic optimization algorithm
that was developed by Yang et al. [28]. The CSA emulates
the breeding behavior of some cuckoo species, which have
a fascinating reproduction mechanism. In particular, some
cuckoos lay their eggs in nests of other birds (often nests of
other species’ nests), where they may discard eggs of other

(12)Ls ≤ Lb, ∀ s ∈ S, b = BPs

(13)
∑

s�≠s ∈ S

BTs+HTs∑

t=BTs−HTs� +1

xs�bt = 0, ∀ s ∈ S, b = BPs.

birds in order to enhance the hatching ratio of their own
eggs. Then, the host birds take care of cuckoo eggs as they
presume that the eggs belong to them. Nonetheless, some-
times the host birds distinguish between their own eggs and
the alien eggs. Accordingly, either the discovered alien eggs
are thrown out of the current nest or new nests are built in
new locations. Inspired by this particular mechanism of lay-
ing eggs by the cuckoo birds, the following three standard
rules are adopted to employ CSA for optimization problems
[28]:

1. each cuckoo lays one egg at a time at a randomly chosen
nest;

2. the best nests with high-quality eggs will not be removed
and will be carried over to the next generation;

3. the quantity of host nests is fixed and the egg dumped by
a cuckoo is discovered by a host bird with a probability
p� ∈ (0, 1).

In this study, each nest denotes a solution set that includes
the berthing times and berthing positions for all arriving
vessels. An egg represents either a berthing position or time,
while a cuckoo egg represents a new (and better) berthing
position or time. The total number of host nests reflects the
total search space at each iteration of the algorithm. In this
work, 100 host nests are considered and each nest contains
2N eggs, where N is the total number of vessels. Hence,
the total number of eggs in a nest is double the total num-
ber of arriving vessels. Overall, the high-level goal of the
algorithm is to use cuckoo eggs (better solutions) to replace
not-so-good eggs in the nests.

 SN Computer Science (2022) 3:325 325 Page 8 of 15

SN Computer Science

Algorithm 1 presents the pseudocode of the Cuckoo
Search Algorithm, which begins with a randomly distributed
initial population of k=100 host nests over the search space
(line #1). In each iteration of the algorithm, the reproduction
step is performed first, where new solutions are generated by
replacing some existing eggs with cuckoo eggs in randomly
selected nests (lines #3–8). The rationale for the egg replace-
ments is that if a cuckoo egg is very similar to a host egg,
then this egg has lesser chances to be discovered. Thus, a
random walk is performed through Lévy flights in order to
generate new nests (i.e., new solutions):

where t denotes the current iteration number, Xi the solu-
tion for nest i, and � (𝛼 > 0) the step size. The ⊕ opera-
tion denotes entrywise multiplication. A random walk in
Lévy flights is performed from a Lévy distribution with a
scale parameter λ [29]. The primary aim of performing ran-
dom steps is to increase the possibility of finding the global
solution instead of becoming stuck in a local optimum. A
new solution replaces a current solution if its fitness score
is lower than the fitness score of the current solution (lines
#5–7). The fitness of each possible solution is evaluated
using the objective function of the BAP presented in Eq. (5)
and accounts for the total processing cost, which includes
waiting, handling, and late departure penalty costs. In addi-
tion, it is possible for some cuckoo eggs to be discovered by
host birds with a discovering probability p� . In our work, p�
is set to 0.45 as reported in [28]. In this case, the nests with
the discovered cuckoo eggs are abandoned and new ones
are built; as a result, the exploration of the search space is
enhanced (lines #9–13). Finally, the best solution across all
iterations is kept (line #14). The above steps repeat until
either the total number of iterations is reached (which equals
100 in this work) or there has been no fitness improvement
for some iterations.

Genetic Algorithm

GA is one of the most popular algorithms from the
metaheuristic family and is based on the evolution process
in natural systems, i.e., Darwin’s principles of survival of
the fittest individuals [30]. Since GA has a high convergence
rate compared to most metaheuristics, it can solve big and
high complexity problems relatively quickly. GA is a popula-
tion-based approach that finds a better solution by managing
a population that contains various possible solutions, which
are revised generation to generation by employing several
genetic operators, including selection, crossover, and muta-
tion. The complete working procedure of GA consists of the
following six steps [31].

(14)X
(t+1)

i
= X

(t)

i
+ 𝛼 ⊕ Levy(λ),

Initial population generation: A random population of
different possible solutions (chromosomes) is generated at
the first step. A single solution is known as a gene, a solution
set is known as a chromosome, and all solution sets form a
population.

Fitness evaluation: The fitness values of all solutions are
evaluated to demonstrate the goodness of solutions.

Selection: The selection phase aims to select a couple
of fittest individuals (parents), which are used for the next
generation. There are more chances for the selection of indi-
viduals for reproduction having the best fitness value. A few
of the fittest individuals are selected as parents for the next
generation.

Crossover: Crossover is employed to produce offsprings,
where, a child adopts one portion of its characteristics from
one parent and the other part from the second parent.

Mutation: A mutation operator is also applied to some
portion of the solutions in the new generation to avoid pre-
mature convergence and maintain diversity in the popula-
tion. In addition, it also ensures that the probability of any
solution is never zero.

Termination of algorithm: The fitness values of the new
population are calculated and the same process repeats until
conditions of termination are met. Termination conditions
include maximum available computation time, maximum
iterations, and a maximum number of generations.

Experimental Results

In this section, we present the settings, data sets, and results
of our extensive berth allocation simulations. In addition to
the CSA method, we implemented a popular population-
based heuristic method (i.e., GA) proposed in the recent
literature [32], as well as the exact MILP approach. The
implemented algorithms are coded in MATLAB 2019b on
a Windows 10 PC with COREi7 processor and 8GB RAM.

Table 2 One-hour interval data set employed for experiments [27]

Ship # ETA HT ETD PBP LoS

1 4 3 8 778 128
2 5 5 11 1416 113
3 10 5 15 957 334
4 4 2 8 1437 423
5 13 3 16 362 173
6 15 1 18 1015 391
7 11 3 15 434 338
8 6 2 9 1008 140
9 9 1 11 1043 302
10 2 2 5 102 194

SN Computer Science (2022) 3:325 Page 9 of 15 325

SN Computer Science

For our experiments, two data sets were used. The first
problem data set is taken from Şahin et al. [27] and shown
in Table 2. The data set contains a number of arriving ships
in a day along with the estimated arrival time, handling
time, estimated departure time, preferred berth position,
and length for each arriving ship. This data set was adapted
to generate more ships within the same planning horizon of
1 day. For instance, the minimum and maximum handling
times for any ship are 2 h and 5 h, respectively (see column
#3 in Table 2); so, we generate randomly handling times for
all ships in between 2 and 5 h; the same policy is used for
the other parameters. In order to stress-test the algorithms
and also to test other planning horizons, a second larger data
set was generated randomly by employing uniform distribu-
tion with realistic settings for all parameters, and a planning
horizon of up to 1 week.

The quay is continuous and has a length of 2000 m in
both data sets. For the cost calculations of the different algo-
rithms, we have used the values 10, 5, and 5 Euros per hour
handling cost, waiting cost, and late departure cost, respec-
tively [27]. When a vessel is moored at a berth position other
than its optimal berthing position, a penalty based on the
absolute difference between the assigned berth position and
the optimal berthing position is added to the handling cost.
The non-optimal berthing cost (NBC) is calculated as fol-
lows: NBC = HCs∕W = 0.005 Euros per meter.

Furthermore, unlike our previous [10] and many other
studies (e.g., [27, 32]), we use a time interval of less than an
hour for the experiments, i.e., 30 min, to make the problem
more practical and to reduce the time loss in the simula-
tions. For example, if a ship takes 5 h and 30 min to load
and unload, a time interval of 1-h wastes 30 min, since the

Fig. 3 Berth allocation solution, when we consider 30-min time interval, generated by a CSA, b GA, and c MILP

 SN Computer Science (2022) 3:325 325 Page 10 of 15

SN Computer Science

algorithms work with a time interval of 1 h and cannot
schedule a ship before the next hour, i.e., 6. A more fine-
grained time interval of 30 min avoids this situation. The
same problem instances were used in the case of the 30-min
time intervals; however, all times in Table 2 are multiplied
by two to generate 30-min values, since the original data
contain values based on 1-h time interval.

Next, we present simulation results when our proposed
and benchmark methods are implemented considering a
30-min time interval. When we implement the 30-min time
interval, this study considers a new constraint, shown in
Eq. (9), which guarantees a minimum and realistic safety
entrance time (SET) of one 30-min time interval between
the berthing times of any two vessels. This constraint is yet
another benefit derived from using a smaller time interval
as using a 1-h SET would be too long and wasteful. The
results presented in Fig. 3 show the three solutions for berth
assignment when we consider a 30-min time interval and the
ten arriving ships shown in Table 2. All three approaches
allocate ships to the available berth positions and time slots
based on the primary objective of this study, which is to
minimize the total processing cost, as shown in Eq. (5). In
Fig. 3, the vertical axis shows the berth positions, while
the horizontal axis shows time divided into 30-min time
intervals. Each rectangle in this figure denotes the berthing
periods and berthing positions assigned to an arriving vessel.
The label within a rectangle indicates the ship index. Unlike

the previous study, a safety entrance time can be noticed as
no two ships berth at the same time. By comparing the sub-
figures, it becomes evident that the three different algorithms
offer three different solutions to the problem, with some ves-
sels berthed at different positions and/or berthing times. For
example, the estimated arrival time of ship 5 is the 26th time
slot (30-min each time slot). The berthing time proposed by
MILP and CSA is the 26th slot, while GA chose the 28th
slot because of the berth placement of ship 7. Hence, ship 5
does not have to wait before berthing when using the CSA
and MILP approaches. On the contrary, ship 5 has to wait
for 1 h (2 slots of 30 min) if GA is employed.

Figure 4 shows the waiting times incurred by the ten
ships when using the three approaches. From Fig. 4, it can
be seen that only one vessel has to wait (for 30 min only)
when MILP is used. However, our newly proposed CSA
method provides a solution with a maximum waiting time
of two time periods (30 min each) for any ship and only two
ships have to wait before berthing. In contrast, when using
GA, five ships have to wait for optimal berthing and the
maximum waiting time for ship 2 is five time slots (i.e., 2.5
h). Such waiting times are very high and in turn can cause
late departures. From these results, we can conclude that
the CSA method outperforms GA in terms of reducing the
waiting times.

Figure 5 shows the requested departure times of all arriv-
ing ships and the proposed departure times by our developed

Fig. 4 Ships’ waiting times
when using CSA, GA, and
MILP approaches

SN Computer Science (2022) 3:325 Page 11 of 15 325

SN Computer Science

Fig. 5 Requested and planned
departure times for each ship
using CSA, GA, and MILP

Fig. 6 Absolute difference
between the berthing position
and the preferred berthing posi-
tion of the ten ships provided by
CSA, GA, and MILP

 SN Computer Science (2022) 3:325 325 Page 12 of 15

SN Computer Science

and compared algorithms, i.e., CSA, GA, and MILP. From
this figure, it can be seen that no vessel departs late using
either MILP or our proposed CSA approach. On the other
hand, with GA, two ships depart late: ships 2 and 5 are three
slots and two slots late, respectively. Once again, we con-
clude that CSA shows higher performance in minimizing
late departures compared to GA.

The results presented in Fig. 6 show the absolute dif-
ference between the optimal berthing positions and berth-
ing positions of the 10 ships provided by the implemented
algorithms, i.e., CSA, GA, and MILP. We can observe from
this figure that MILP always provides optimal berthing posi-
tions except for only two ships, namely, ships 4 and 7. CSA’s
behavior in terms of berth placement is similar to MILP as
it also uses non-optimal berthing positions for ships 4 and
7, plus some very small deviations for three more ships.
On the contrary, 8 out of the 10 ships are moored to other
than optimal berthing positions when using GA, albeit with
small differences. Even though ships 4 and 7 berth at (near)
optimal positions with GA, they cause major waiting times
and departure delays for ships 2 and 5, respectively, lead-
ing to higher cost solutions. Overall, by considering all
results presented so far, it is evident that it is not possible to
achieve both zero waiting times and optimal berthing posi-
tions for all ships from Table 2. The best solutions comes
from delaying ship 4 by 30 min (due to the safety entrance
time constraint) and using non-optimal berthing positions
from ships 4 and 7 in order to avoid delays for other ships.

In this regard, the solution provided by CSA is much closer
to the optimal MILP solution compared to the GA solution.

For comparison purposes, the total processing cost along
with the computation times for all implemented algorithms,
i.e., CSA, GA, and MILP, are shown in Table 3. In addition,
we have also varied the number of arriving ships to study
the scalability of the proposed method. We tested the three
approaches on multiple instances, where 10–30 ships and a
30-min time interval are considered, while all other param-
eters are the same, i.e., the length of the quay, the arrival
pattern of the ships, and the berth layout. It can be seen
from Table 3 that MILP provides the optimal solution in
terms of minimum processing cost in all cases; however, our
proposed CSA-based algorithm also provides a near-optimal
solution in all cases when we compare it with the alternative
GA approach. For example, the results of the first instance
show that MILP achieves the lowest cost of 285 Euros, as
expected, CSA also has a lower cost as compared to GA,
which is 322 Euros; however, total processing cost with the
GA is significantly higher (347 Euros). A similar pattern is
observed for the other instances; the solutions proposed by
CSA are only slightly costlier (ranging from 4.9 to 14.1%)
than the optimal MILP solution, while the solutions of GA
are more expensive (ranging from 11.9 to 20.5%). Further-
more, Table 3 also presents the computational time of all
three algorithms when using 30-min time interval. It can be
noticed from this table that GA has the minimum computa-
tional time and MILP has higher computational time. Our

Table 3 Comparative
analysis in terms of cost and
computation time when using
data instances from [27] with
30-min time intervals

Method CSA GA MILP

No. No. ships Cost (€) Time (s) Cost (€) Time (s) Cost (€) Time (s)
1 10 302 0.94 347 0.21 288 207.26
2 15 434 1.26 470 0.30 395 318.84
3 20 595 1.43 620 0.21 535 404.59
4 25 680 2.01 688 0.57 615 530.96
5 30 827 3.08 832 0.98 725 644.01

Table 4 Comparative
analysis in terms of cost and
computational time when
using randomly generated data
instances with 30-min time
intervals

Method CSA GA MILP

No. No. ships Cost (€) Time (s) Cost (€) Time (s) Cost (€) Time (s)
1 10 355 1.16 380 0.40 305 195.25
2 20 702 1.71 722 0.42 620 333.29
3 30 1005 2.83 1020 0.56 895 557.70
4 40 1322 4.99 1785 0.89 1080 719.98
5 50 1730 6.92 1792 1.56 1460 957.05
6 60 2102 5.07 2137 1.22 – –
7 70 2527 6.49 2597 1.91 – –
8 80 2990 1.29 3060 2.42 – –
9 90 3092 17.89 3215 4.94 – –
10 100 3635 12.82 3692 4.07 – –

SN Computer Science (2022) 3:325 Page 13 of 15 325

SN Computer Science

proposed CSA-based method takes only slightly higher time
compared to GA (up to 3 s vs. 1 s) but provides better cost
reduction. Compared to CSA, the MILP is orders of magni-
tude slower and takes on average 250× more computational
time to solve the berth allocation problem.

In order to stress-test the algorithms, we also gener-
ated a larger synthetic data set with 20 uniformly random
instances (10–100 vessels), 10 with 1-h interval and 10 with
a 30-min interval. In addition, we increased the planning
period from 1 day to 1 week when the number of ships is
greater than 40. Table 4 shows a comparative analysis when
using the data instances that were randomly generated with
30-min time intervals. The overall trends in terms of cost are
the same as before: MILP offers the lowest cost, followed
closely by CSA (with 12.3–22.4% higher cost), while GA
lead to the highest cost with up to 65.3% worse cost than
the minimum. In terms of computation times, both GA and
CSA scale well with very low running times, less than 5
and 18 s, respectively. MILP, on the other hand, leads to
much longer running times (3–16 min) that are about two
orders of magnitude higher compared to CSA and grow
super-linearly. To make matters worse, when the number
of ships in the problem set becomes greater than 50, the
MILP runs out of memory and thus it is unable to solve
large problem instances. Overall, CSA is a very efficient
approach that leads to near-optimal solutions in terms of
total processing costs.

Finally, Fig. 7 shows the computation time of MILP when
using a 1-h or a 30-min time interval as we increase the num-
ber of ships in the problem data set. In both scenarios, the
computation time grows super-linearly, with the 30-min time
interval case growing much more aggressively, even though
the number of intervals is only double compared to the 1-h
interval case. As previously mentioned, MILP runs out of
memory and cannot solve problem instances with more than
50 cases when using 30-min intervals. Therefore, MILP
cannot be used for larger, more realistic problem sizes; an
observation that has been reported previously in other stud-
ies, such as requiring over 100 h of CPU time for real-world
instances [32]. Such times are certainly not acceptable in the
context of MCT operations.

Conclusions

This study focuses on the berth allocation problem with
dynamic ship arrivals, where a metaheuristic-based cuckoo
search algorithm (CSA) is proposed to solve the BAP. In
addition, we implemented two benchmark methods for
comparison, a well-known metaheuristic genetic algorithm
(GA) and an exact approach (MILP). Unlike existing stud-
ies, and to make the problem more practical, a fine-grained
time interval of 30 min is used in this study along with
other practical constraints, such as a safety time distance
between berths. The proposed and compared approaches

Fig. 7 Computation time of
MILP using random data
(10–100 ships) when we con-
sider both time intervals, i.e., 1
h and 30 min

 SN Computer Science (2022) 3:325 325 Page 14 of 15

SN Computer Science

are implemented on multiple data instances generated from
a benchmark data set. In addition, randomly (uniformly)
generated data instances with up to 100 vessels and a plan-
ning horizon up to a week are used for experiments to test
the flexibility and scalability of the proposed method. The
results show that our proposed algorithm (CSA) has higher
efficiency in terms of minimum processing cost for all
incoming ships compared to GA. Compared to MILP, our
proposed CSA algorithm provides a near-optimal solution
at a fraction of the computation time. Moreover, when we
implement all algorithms on large data sets, the MILP algo-
rithm runs out of memory and cannot provide an optimal
solution in reasonable time. Overall, CSA beats GA in terms
of processing cost and outperforms MILP in terms of com-
putation time, and thus provides near-optimal solutions in
affordable computation times.

Funding This work was supported by the European Regional
Development Fund and the Republic of Cyprus through the
Cyprus Research and Innovation Foundation (STEAM Project:
INTEGRATED/0916/0063).

Availability of data and materials Not applicable.

Declarations

Conflict of interest/Competing interests Not applicable.

Code availability Not applicable.

References

 1. Aslam S, Michaelides MP, Herodotou H. Internet of ships: a sur-
vey on architectures, emerging applications, and challenges. IEEE
Internet of Things J. 2020;7:9714–27.

 2. Hsu H-P, Wang C-N, Chou C-C, Lee Y, Wen Y-F. Modeling and
solving the three seaside operational problems using an object-ori-
ented and timed predicate/transition net. Appl Sci. 2017;7(3):218.

 3. Barbosa F, Rampazzo PCB, Yamakami A, Camanho AS. The use
of frontier techniques to identify efficient solutions for the berth
allocation problem solved with a hybrid evolutionary algorithm.
Comput Oper Res. 2019;107:43–60.

 4. De A, Pratap S, Kumar A, Tiwari M. A hybrid dynamic berth
allocation planning problem with fuel costs considerations for
container terminal port using chemical reaction optimization
approach. Ann Oper Res. 2020;290(1):783–811.

 5. Vessels arrivals at China Ports. 2019. https:// www. cargo smart. ai/
en/ blog/ vesse ls- arrive- at- top- china- ports- with- short er- delays- in-
2019/. Accessed 2 May 2022.

 6. UNCTAD: Ports in 2017. 2017. https:// unctad. org/ system/ files/
offic ial- docum ent/ rmt20 18ch4_ en. pdf. Accessed 2 May 2022.

 7. Michaelides MP, Herodotou H, Lind M, Watson RT. Port-2-port
communication enhancing short sea shipping performance: the
case study of Cyprus and the eastern Mediterranean. Sustainabil-
ity. 2019;11(7):1912.

 8. Lind M, Michaelides M, Ward R, Herodotou H, Watson R. Boost-
ing data-sharing to improve short sea shipping performance:

evidence from Limassol port calls analysis. Tech. Rep. 35, UNC-
TAD Transport and Trade Facilitation Newsletter No. 82-Second
Quarter 2019.

 9. Carlo HJ, Vis IF, Roodbergen KJ. Seaside operations in container
terminals: literature overview, trends, and research directions.
Flex Serv Manuf J. 2015;27(2–3):224–62.

 10. Aslam S, Michaelides MP, Herodotou H. Dynamic and continuous
berth allocation using cuckoo search optimization. In: Proceedings
of the 7th International Conference on vehicle technology and
intelligent transport systems (VEHITS), 2021; p. 72–81.

 11. Bierwirth C, Meisel F. A survey of berth allocation and quay
crane scheduling problems in container terminals. Eur J Oper Res.
2010;202(3):615–27.

 12. Bierwirth C, Meisel F. A follow-up survey of berth allocation and
quay crane scheduling problems in container terminals. Eur J Oper
Res. 2015;244(3):675–89.

 13. Jos BC, Harimanikandan M, Rajendran C, Ziegler H. Minimum
cost berth allocation problem in maritime logistics: new mixed
integer programming models. Sādhanā. 2019;44(6):149.

 14. Kavoosi M, et al. Berth scheduling at marine container terminals.
Marit Bus Rev. 2019;5(1):30–66.

 15. Dulebenets MA. Application of evolutionary computation for
berth scheduling at marine container terminals: Parameter tun-
ing versus parameter control. IEEE Trans Intell Transp Syst.
2017;19(1):25–37.

 16. Xu Y, Xue K, Du Y. Berth scheduling problem considering
traffic limitations in the navigation channel. Sustainability.
2018;10(12):4795–816.

 17. Hsu H-P, Chiang T-L, Wang C-N, Fu H-P, Chou C-C. A hybrid
GA with variable quay crane assignment for solving berth alloca-
tion problem and quay crane assignment problem simultaneously.
Sustainability. 2019;11(7):2018–38.

 18. Chen L, Huang Y. A dynamic continuous berth allocation method
based on genetic algorithm. In: Proceedings of the 3rd IEEE Inter-
national Conference on control science and systems engineering
(ICCSSE), (IEEE) 2017; p. 770–73.

 19. Mauri GR, Ribeiro GM, Lorena LAN, Laporte G. An adaptive
large neighborhood search for the discrete and continuous berth
allocation problem. Comput Oper Res. 2016;70:140–54.

 20. Alsoufi G, Yang X, Salhi A. Robust berth allocation using a hybrid
approach combining branch-and-cut and the genetic algorithm.
In: International Workshop on hybrid metaheuristics, (Springer).
2016; p. 187–201.

 21. Ernst AT, Oğuz C, Singh G, Taherkhani G. Mathematical models
for the berth allocation problem in dry bulk terminals. J Sched.
2017;20(5):459–73.

 22. Xiang X, Liu C, Miao L. A bi-objective robust model for berth
allocation scheduling under uncertainty. Transp Res Part E Logist
Transp Rev. 2017;106:294–319.

 23. Frojan P, Correcher JF, Alvarez-Valdes R, Koulouris G, Tamarit
JM. The continuous berth allocation problem in a container termi-
nal with multiple quays. Expert Syst Appl. 2015;42(21):7356–66.

 24. Simrin A, Diabat A. The dynamic berth allocation problem: a
linearized formulation. RAIRO-Oper Res. 2015;49(3):473–94.

 25. Hu Z-H. Multi-objective genetic algorithm for berth alloca-
tion problem considering daytime preference. Comput Ind Eng.
2015;89:2–14.

 26. Sabar NR, Chong SY, Kendall G. A hybrid differential evolution
algorithm–game theory for the berth allocation problem. In: Pro-
ceedings of the 18th Asia Pacific Symposium on intelligent and
evolutionary systems-volume 2, (Springer). 2015; p. 77–87.

 27. Şahin C, Kuvvetli Y. Differential evolution based meta-heuristic
algorithm for dynamic continuous berth allocation problem. Appl
Math Model. 2016;40(23–24):10679–88.

https://www.cargosmart.ai/en/blog/vessels-arrive-at-top-china-ports-with-shorter-delays-in-2019/
https://www.cargosmart.ai/en/blog/vessels-arrive-at-top-china-ports-with-shorter-delays-in-2019/
https://www.cargosmart.ai/en/blog/vessels-arrive-at-top-china-ports-with-shorter-delays-in-2019/
https://unctad.org/system/files/official-document/rmt2018ch4_en.pdf
https://unctad.org/system/files/official-document/rmt2018ch4_en.pdf

SN Computer Science (2022) 3:325 Page 15 of 15 325

SN Computer Science

 28. Yang XS, Deb S. Cuckoo search via Lévy flights. In: World Con-
gress on Nature & Biologically Inspired Computing (NaBIC),
(IEEE), 2009; p. 210–14.

 29. Sanajaoba S, Fernandez E. Maiden application of cuckoo search
algorithm for optimal sizing of a remote hybrid renewable energy
system. Renew Energy. 2016;96:1–10.

 30. Holland JH. Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artifi-
cial intelligence. Cambridge: MIT Press; 1992.

 31. Popov A. Genetic algorithms for optimization. User Manual,
Hamburg. 2005; (2013).

 32. Salhi A, Alsoufi G, Yang X. An evolutionary approach to a com-
bined mixed integer programming model of seaside operations as
arise in container ports. Ann Oper Res. 2019;272(1–2):69–98.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Enhanced Berth Allocation Using the Cuckoo Search Algorithm
	Abstract
	Introduction
	Background and Motivations
	Contributions
	Organization

	Literature Review
	Problem Description
	Mathematical Formulation

	Proposed and Benchmark Approaches
	Cuckoo Search Algorithm
	Genetic Algorithm

	Experimental Results
	Conclusions
	References

